ACTIVATED SLUDGE PROCESS

To "Treat" Wastewater

Remove (reduce) Or "Stabilize" The Material in Wastewater

SECONDARY TREATMENT

Biological Wastewater Treatment

SECONDARY TREATMENT

Biological Wastewater Treatment

Microorganisms consume organic matter from the wastewater, using oxygen for respiration

Millions of aerobic and facultative micro-organisms remove pollutants thru living and growing process

Activated Sludge System

Air \rightarrow Provides Oxygen and Mixing

Suspended Growth, Biological Treatment

Need favorable conditions for growth and for separation from the water

Biological solids are used over and over

Growth rate produces about 0.7 lbs of biological solids per lb BOD removed

Typical Flow-Through Activated Sludge Plant

Biological Wastewater Treatment

Three Steps 1. Transfer of Food from Wastewater to Cell.

> **Adequate Mixing Enough Detention Time**

Biological Wastewater Treatment

2. Conversion of Food to New Cells and Byproducts.

> Acclimated Biomass Useable Food Supply Adequate D.O. **Proper Nutrient Balance** 100:5:1 C : N : P

Biological Wastewater Treatment

3. Flocculation and Solids Removal

Proper Mixing Proper Growth Environment Secondary Clarification

Biological Wastewater Treatment

3. Flocculation and Solids Removal

Must Have Controls

Proper Growth Environment

Filamentous Bacteria – Form Strings

Mixed Liquor Does Not Compact - Bulking

Organic Load = Pounds of Organics (BOD) Coming into Aeration Tank

OXYGEN DEMAND

Biochemical Oxygen Demand B.O.D.

The Quantity of Oxygen Used in the Biochemical Oxidation of Organic

Material.

Best to Use a "Moving Average" to Determine the Average Impact on a Treatment System.

BOD Moving Average

Calculate the 7 day moving average of pounds of BOD for 10/5 and 10/6.

Date	Pounds of BOD	10/5 2281 2777 1374 2459	10/6 13,525 - 2281 + 1577
9/29 9/30 10/1 10/2 10/3 10/4 10/5 10/6	2281 2777 1374 2459 960 1598 2076 1577	960 1598 2076 13,525 7 = 1932	12,821 = 1832 7 = 1832
10/7	2351		

6

Need to Balance Organic Load (lbs BOD) With Number of Active Organisms in Treatment System

How Much Food ? Primary Effluent BOD

Lbs/D BOD = FLOW (MGD) X 8.34 Lbs/Gal X P.E. BOD (mg/L)

F = Pounds BOD (Coming into Aeration Tank)

How is M (Microorganisms) measured?

Mixed Liquor Volatile Suspended Solids (MLVSS)

M = Pounds MLVSS (In Aeration Tank)

Mixed Liquor Suspended Solids (MLSS) and Mixed Liquor Volatile Suspended Solids (MLVSS)

Mixed Liquor Suspended Solids (MLSS) and Mixed Liquor Volatile Suspended Solids (MLVSS)

Determining MLSS

How Much Food (F) ? Pounds BOD

Lbs/D BOD =

FLOW (MGD) X 8.34 Lbs/Gal X Pri. Eff. BOD (mg/L)

How is **M** (Microorganisms) measured?

Mixed Liquor Volatile Suspended Solids (MLVSS)

M = Pounds MLVSS

CALCULATION OF POUNDS

Pounds =

Conc. x Flow (or Volume) x 8.34 Lbs/gallon

Concentration Of STUFF In the Water Quantity Of Water The STUFF Is In

Weight X Of The Water

Pounds of Volatile Solids in the Aeration Tank

Lbs MLVSS =

Volume Aeration Tank, MG X MLVSS, mg/L X 8.34 Lbs/gal

Calculate the pounds of volatile solids in an aeration tank that has a volume of 0.471 MG and the concentration of volatile suspended solids is 1700 mg/L.

Lbs = 0.471 MG X 1700 mg/L X 8.34 lbs/gal

Food to Microorganism Ratio

The F/M Ratio for Best Treatment Will Vary for Different Facilities
Determined by Regular Monitoring and
Comparing to Effluent Quality
Often Will Vary Seasonally

Typical Range:

Conventional Activated Sludge F:M 0.25 - 0.45

Extended Aeration Activated Sludge F:M 0.05 - 0.15

Food to Microorganism Ratio

$$\frac{F}{M} = \frac{\cancel{D}}{\cancel{D}} = \frac{Lbs \text{ of BOD}}{Lbs \text{ of MLVSS}}$$

Calculate Often to Monitor/Control

Monthly (Minimum) Weekly (Better) Use Moving Average