WASTE CHARACTERISATION, WASTE QUALITY AND WASTE PARAMETERS

WHY IS IT IMPORTANT???

- The needs for reliable data about what is in the waste stream quantity and quality
- Has become paramount to the success of the waste treatment
- Determine the best or appropriate technology used for treating the waste stream
- Help in planning and sizing the waste treatment facilities
- Help in estimating the needs for transportation

Steps of waste characterisation Planning (identifying the most appropriate selection procedure) Sample Sample preparation Performance of analytical analysis procedure procedu

Approaches	in wastewater				
characterisation					
Traditional	Modern				
Focus on point sources	Classification of receiving water based on use: • A - drinking, environmentally sensitive • B - bathing, fish-life • C - irrigation, fish-life, agricultural use				
Mainly concerned with local effect	Definition of stream quality standards for specific use				
Definition of maximum limits (BOD, SS, T, pH, nutrients etc.)					
Usually concentration limits and total flow rate limit					

Procedure, or wastewater characteristision	
What is (in) Wastewater?	
1. Identify wastewater sources and flows	
2. Specify likely key pollutants	
3. Select suitable sampling strategies	
4. Measure pollutant concentrations	
5. Calculate pollutant loads	
6. Identify main components to be removed	
a. Sources and Flow Rates	
Essential step to identify problem area	
How to define sources & flows?	
1. Use "systems/mass balance" approach	
Utilize wastewater audits Anticipate future requirements	
4. Reduce > Reuse > Recycle	
5. Simple is better than complex	
Source reduction can drastically improve wastewater situation (tannery)	
b. Type; of Pollutant;	
b. Type; or Ponusuns;	
Physical: solids, temperature, color, turbidity, salinity, odor	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Chemical: Organic: carbohydrates, fats, proteins, toxins	
• Inorganic: alkalinity, N, P, S, pH, metals, salts	
• Gaseous : H2S, CH4, O2	
a Bealaniani, plante (alana mare ata)	
Biological: plants (algae, grass, etc.), microorganisms (bacteria, viruses)	

~ (strat	

- Aim: to ensure that the sample of waste is a good representation of the true value of waste
- In this stage, needs to identify:
 - 1. Sampling time
 - 2. Sampling size
 - 3. Sampling location
 - 4. Method used to collect the sample
 - 5. Method used to preserve sample prior analysis

d. Measurement of pollutant concentration

- Sample preparation MUST to be carefuly carried out to get accurate and precise measurements
- Know the properties of sample liquid, solid or gas
- Making samples homogenous
- Reducing sample size take an aliquot of homogenous sampe that representing the sample population
- Sample identification labelling of the sample
- analytical equipments/instruments manual or automatic

• (harac	terisation	method:	s - anal	vtical	proced	ure

Proximate Analysis

Ultimate Analysis

Biochemical Analysis

Microbiological Analysis

Elemental Analysis

MUST follow standard for wastewater, examples:

- APHA (Standard Methods for the Examination of Water and Wastewater/APHA)
- HACH methods
- etc

-		lutant l	

- depending on the analytical methods chosen
- Used the formula in the standard method selected
- Main wastewater parameters measured, include:
 - Total Suspended Solids
 - Suspended Solids
 - Volatile Suspended Solids
 - Temperature
 - pl-
 - Salinity
- Colour and Turbidity
- BOD
- COD

f. Identification of pollutant to be removed

- Based on the highest concentration of pollutants present in wastewater
- This will influence the selection of technology to be used in treating wastewater - physical, chemical, biological, enzyme, thermal, or combined treatment technology

\$OLID WASTE CHARACTERISATION

What is Solid Waste? Municipal Solid Waste (MSW) AKA: "trash" or "garbage"

• Includes:

Durable goods, e.g., tires, furniture
 Nondurable goods, e.g., newspapers, plastic plates/cups; containers and packaging, e.g., milk cartons, plastic wrap; and other wastes, e.g.,

Yard waste, food.

- Common household waste, as well as office and retail wastes
- Excludes industrial, hazardous, and construction wastes

Glass. 5%

Other, 3%

Characteristics of solid waste

- Volume quantity
- Physical: Total solids, volatile solids, ash, moisture content

Paper, 34%

- Chemical:
 - Organic: carbohydrates, fats, proteins, toxins, phenols, oil...
- Inorganic: Cyanides, Sulphates, Asbestos...
- Elemental: C, H, O, N, S, P, K ..
- Heavy metals: Cadmium, Mercury, Lead
- **Biological**: plants (algae, grass, etc.), microorganisms (bacteria, viruses)

Characteristics of solid waste

- Volume quantity
- Physical: Total solids, volatile solids, COD, ash, moisture content
- Chemical:
 - Organic: carbohydrates, fats, proteins, toxins, phenols, oil...
 - Inorganic: Cyanides, Sulphates, Asbestos...
- Elemental: C, H, O, N, S, P, K ..
- Heavy metals: Cadmium, Mercury, Lead
- Biological: plants (algae, grass, etc.), microorganisms (bacteria, viruses)

Calorific value of solid waste

- Use Bomb calorimeter
- Is the measurement of the heat generated on combustion
- Can be used to compare energy potential from solid waste

EMISSIONS/AIR POLLUTANTS CHARACTERISATION

Typical of emissions/air pollutants

- directly emmitted into the atmosphere from sources
 to cause harm in high enough concentration
- 2. Secondary pollutants
 - not directly emitted from sources but instead from in the atmoshpere from primary pollutants (known as precursors)
 also to cause harm in high enough concentration

Primary air pollutants

- Carbon compounds CO, CO₂, CH₄ and VOCS
- Nitrogen compounds NO, N₂O and NH₃
- Sulfur compounds H₂S and SO₂
- Halogen compounds chlorides fluorides and bromides
- Particulate matter (PM or aerosols) either in solid or liquid

Secondary air pollutants

- NO₂ and HNO₃ are formed from NO
- Ozone (O₃) are formed from photochemical reaction of NO₂ and VOC
- Sulfuric acid droplets from SO₄
- Nitric acid droplets formed NO₂₊
- Sulfates and nitrates aerosols formed from reaction of sulfuric acid droplet and nitric acid droplet with NH₃
- Organic aerosolcs formed from VOS in gas to particle reaction

Source of air pollution

- Nature e.g. From volcanoes (ashes, dust), land source (dust, soil particles), green plants (vapor, pollen), forest fire, etc.
- 2. Manmade source e.g. thermal power plant, textile mills, nuclear reactions, ttransportation, Industrial and domestic fuel burning, Industrial processes. etc
- 3. Primary and secondary air pollutants

-		

Measurement of air	11 11
Measurement of all	r nallutian
ivicasai ciliciti di ali	ı ponution

- General steps are similar to wastewater or solid waste characterisation
- Pollution can be measured in many ways, from simple physical and chemical measurements, to sophisticated electronic methods.
- The three main methods are:
 - Passive Sampling Methods
 - Active Sampler Methods
 - Automatic Sampler Methods

Passive Sampling Methods

Diffusion Tubes:

Simple, inexpensive, simple plastic tubes or discs open at one end to the atmosphere, with a chemical absorbent at the other.

- Give an indication of the average pollution over an area for a period of weeks or months.
- To indentify 'hotspot'

Active Sampler Methods

- Collect Pollutant samples, physically or chemically and analyse in the Laboratory.
- Regular measurements are easier and faster at less cost than automatic sampling.
- Provide good baseline data for comparison

-		
-		
_		
-		

- /									
-/	۱ T T	tom	13 t I	$\sim \Lambda$	$\Lambda \cap$	th		α	9
7	AU.			U. /\	$A \leftarrow$		LUI	U I	S

- Give hourly measurements at a particular point.
- spectroscopic techniques
 filtration techniques, e.g. For particulate matter
 gas chromatography, e.g. for hydrocarbons.
- Samples can be analysed on-line and in real-time, BUT expensive.
- Provide accurate, reliable data need to ensure good maintenance operational and quality assurance/control procedures.